Counterexample-guided Planning

نویسندگان

  • Krishnendu Chatterjee
  • Thomas A. Henzinger
  • Ranjit Jhala
  • Rupak Majumdar
چکیده

Planning in adversarial and uncertain environments can be modeled as the problem of devising strategies in stochastic perfect information games. These games are generalizations of Markov decision processes (MDPs): there are two (adversarial) players, and a source of randomness. The main practical obstacle to computing winning strategies in such games is the size of the state space. In practice therefore, one typically works with abstractions of the model. The difficulty is to come up with an abstraction that is neither too coarse to remove all winning strategies (plans), nor too fine to be intractable. In verification, the paradigm of counterexampleguided abstraction refinement has been successful to construct useful but parsimonious abstractions automatically. We extend this paradigm to probabilistic models (namely, perfect information games and, as a special case, MDPs). This allows us to apply the counterexample-guided abstraction paradigm to the AI planning problem. As special cases, we get planning algorithms for MDPs and deterministic systems that automatically construct system abstractions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexample-Guided Cartesian Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR) is a method for incrementally computing abstractions of transition systems. We propose a CEGAR algorithm for computing abstraction heuristics for optimal classical planning. Starting from a coarse abstraction of the planning task, we iteratively compute an optimal abstract solution, check if and why it fails for the concrete planning task and...

متن کامل

Counterexample-guided Abstraction Refinement for Classical Planning Master’s Thesis

Counterexample-guided abstraction refinement (CEGAR) is amethodological framework for incrementally computing abstractions of transition systems. We propose a CEGAR algorithm for computing abstraction heuristics for optimal classical planning. Starting from a coarse abstraction of the planning task, we iteratively compute an optimal abstract solution, check if and why it fails for the concrete ...

متن کامل

ar X iv : 1 70 8 . 04 02 8 v 1 [ cs . R O ] 1 4 A ug 2 01 7 Counterexample Guided Inductive Optimization Applied to Mobile Robots Path Planning ( Extended Version )

We describe and evaluate a novel optimization-based off-line path planning algorithm for mobile robots based on the Counterexample-Guided Inductive Optimization (CEGIO) technique. CEGIO iteratively employs counterexamples generated from Boolean Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) solvers, in order to guide the optimization process and to ensure global optimization. Thi...

متن کامل

Abstraction Refinement for Termination

ion Refinement for Termination⋆ Byron Cook, Andreas Podelski, and Andrey Rybalchenko 1 Microsoft Research, Cambridge 2 Max-Planck-Institut für Informatik, Saarbrücken Abstract. Abstraction can often lead to spurious counterexamples. Counterexample-guided abstraction refinement is a method of strengthening abstractions based on the analysis of these spurious counterexamples. For invariance prope...

متن کامل

Counterexample-Guided Control

A major hurdle in the algorithmic veri cation and control of systems is the need to nd suitable abstract models, which omit enough details to overcome the state-explosion problem, but retain enough details to exhibit satisfaction or controllability with respect to the speci cation. The paradigm of counterexample-guided abstraction re nement suggests a fully automatic way of nding suitable abstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005